Local characterization of strongly convex sets

نویسندگان

  • Alexander Weber
  • Gunther Reißig
چکیده

Strongly convex sets in Hilbert spaces are characterized by local properties. One quantity which is used for this purpose is a generalization of the modulus of convexity δΩ of a set Ω. We also show that limε→0 δΩ(ε)/ε 2 exists whenever Ω is closed and convex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces

In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

Strongly convex set-valued maps

We introduce the notion of strongly t-convex set-valued maps and present some properties of it. In particular, a Bernstein–Doetsch and Sierpiński-type theorems for strongly midconvex set-valued maps, as well as a Kuhn-type result are obtained. A representation of strongly t-convex set-valued maps in inner product spaces and a characterization of inner product spaces involving this representatio...

متن کامل

On the quadratic support of strongly convex functions

In this paper, we first introduce the notion of $c$-affine functions for $c> 0$. Then we deal with some properties of strongly convex functions in real inner product spaces by using a quadratic support function at each point which is $c$-affine. Moreover, a Hyers–-Ulam stability result for strongly convex functions is shown.

متن کامل

Some results on functionally convex sets in real Banach spaces

‎We use of two notions functionally convex (briefly‎, ‎F--convex) and functionally closed (briefly‎, ‎F--closed) in functional analysis and obtain more results‎. ‎We show that if $lbrace A_{alpha} rbrace _{alpha in I}$ is a family $F$--convex subsets with non empty intersection of a Banach space $X$‎, ‎then $bigcup_{alphain I}A_{alpha}$ is F--convex‎. ‎Moreover‎, ‎we introduce new definition o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013